自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

极简AI

BriefAI·极简人工智能平台-基于深度学习的理论学习与应用开发技术分享

  • 博客(238)
  • 资源 (41)
  • 收藏
  • 关注

原创 『带你学AI』带你学AI与TensorFlow2实战之入门初探:如何速成深度学习开发

目录系列开篇语深度学习初探是否需要深度学习如何开始学习与选择资料尾巴系列开篇语写深度学习博客有两年多了,从最初的做记录备忘到现在经验总结分享,积累了一些读者,也结识了不少想入门研究深度学习的朋友。有不少朋友私聊问小宋如何快速入门深度学习,我发现大部分小伙伴都是对这方面有兴趣面对网上丰富的资料却不知道如何选择与操作。从而让我萌发了写一个一步步手把手带大家如何从零开始学习,使得基础薄弱的人员能以更简单易懂的方式入门深度学习与实战开发系列教程——《带你学AI与TensorFlo.

2020-12-22 10:32:52 3648 14

原创 『带你学AI』测试深度学习框架GPU版本是否正确安装方法:TensorFlow,PyTorch,MXNet,PaddlePaddle

0.引子在深度学习框架GPU版本安装成功后,需要测试一下是否成功安装。GPU版本不像CPU版本的简单,CPU版本测试一般只需import一下测试是否能正确导入即可。GPU版本还需要测试CUDA或者GPU模块是否能正确调用起来。下面将介绍笔者常用框架的测试方法,包括TensorFlow,PyTorch,MXNet,PaddlePaddle。如果小伙伴有其他框架测试需求或者经验,欢迎在评论区指出。必要的时候,笔者会及时更新一下的。1.方法1.0:TensorFlowTensorF..

2020-09-28 16:26:18 434

原创 『算法理论学』基于深度人脸识别流程介绍

0.引子以OpenFace算法中实现人脸识别的流程举例,这个流程可以看做是使用深度卷积网络处理人脸问题的一个基本框架,结构如下图所示由上图可知人脸识别项目可以分为5个主要步骤:1,首先输入一张照片;2,对照片检测出人脸并分类出是否为活体;3,对检测到的活体人脸进行对齐和裁切人脸;4,对对齐和裁切后人脸进行特征提取,表征为特征码;5,对表征后成对特征码进行比对。2.详细介绍1、Input Image -> Detect输入:原始的可能含有人脸的图像。输出...

2020-08-31 16:12:25 487

原创 『算法理论学』深度学习推理加速方法之网络层与算子融合

首发于AI深度学习应用之路写文章任何事物都有连续性 --《极简主义》范式三:保持连续性的思维可以事半功倍0.引子在深度学习推理方面有多种提速方法,如模型剪枝量化与层算子融合等。网络层与算子融合是非常有效的方法,本文将配合TensorRT与tflite推理框架介绍下网络层与算子融合的原理与应用。1.融合理论下面配合TensorRT介绍下网络层与算子融合的原理。这是一个原始的Inception Block,首先input后会有多个卷积,卷积完后有Bia...

2020-08-27 20:21:16 792

原创 『深度应用』OneFlow快速上手指南

现实中没有复杂的系统--《极简主义》范式一:事情其实很简单0.引子为什么会有写这篇文章?1.这不是一篇广告文,笔者不是大V,没人联系写稿,请放心食用。2.这不是一片解析文,笔者水平有限,还无法做出深度解读。https://zhuanlan.zhihu.com/p/85111240此篇对TF2.0的解析就差很大火候,让大家见笑了。3.这可以算是一篇技术文章,通过对OneFlow安装,简单上手等操作来对比OneFlow较主流深度学习框架的难易程度。简单分析下深度...

2020-08-25 14:12:45 529

原创 『深度应用』YoloV5 RTX2080Ti TX2 Nano AGX TensorRT与PyTorch速度对比

1.概述此次实验是为了探究YoloV5在RTX2080Ti平台上使用TensorRT对于模型推理的加速效果,同时也比对一下RTX2080Ti平台上GPU对于i7-8700CPU的加速。照例先提出来实验硬件环境:系统:Ubuntu 18.04.3LTS CPU:Intel® Core™ i7-8700 CPU @ 3.20GHz × 12 GPU:GeForce RTX 2080Ti Cuda:10.1 Pytorch:1.5.0 TensorRT:7.1.02....

2020-08-11 16:50:40 2322 6

原创 『深度应用』对CenterNet的一些思考与质疑·对比与U版YoloV3速度与精度
原力计划

0.引子笔者很喜欢CenterNet极简的网络结构,CenterNet只通过FCN(全卷积)的方法实现了对于目标的检测与分类,无需anchor与nms等复杂的操作高效的同时精度也不差。同时也可以很将此结构简单的修改就可以应用到人体姿态估计与三维目标检测之中。后面一些针对CenterNet结构应用于其他任务,也取得不错的效果,比如人脸检测CenterFace以及目标追踪CenterTrack与FairMot。这些内容后面等笔者研习过后再补充,后面应该会做一个类CenterNet结构总结对比,感兴.

2020-07-21 19:19:02 2083 1

原创 『深度概念』极简图解卷积与反卷积操作

正向卷积正向卷积的实现过程。假设输入的图片 input 尺寸为 4x4,元素矩阵为:卷积核的尺寸为 3x3,其元素矩阵为:正向卷积操作:步长 strides = 1, 填充 padding = 0,输出形状为 2x2,该过程如下图所示:在上面这幅图中,底端为输入,上端为输出,卷积核为 3x3。如果我们用矩阵乘法去描述这个过程: 把 input 元素矩阵展开成一个列向量 Xinput=[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13

2020-07-20 22:56:35 433

原创 『王霸之路』从0.1到2.0一文看尽TensorFlow奋斗史

0 序篇2015年11月,Google正式发布了Tensorflow的白皮书并开源TensorFlow 0.1 版本。2017年02月,Tensorflow正式发布了1.0.0版本,同时也标志着稳定版的诞生。2019年10月,TensorFlow在经历七个多月(2019年3月1日-2019年10月1日)的 2.0 Alpha版本的更新迭代后发布 2.0 正式版。2...

2019-10-03 19:59:53 7119 6

原创 『带你学AI』极简安装TensorFlow2.x的CPU与GPU版本教程

0 前言TensorFlow 2.0,今天凌晨,正式放出了2.0版本。不少网友表示,TensorFlow 2.0比PyTorch更好用,已经准备全面转向这个新升级的深度学习框架了。本篇文章就带领大家用最简单地方式安装TF2.0正式版本(CPU与GPU),由我来踩坑,方便大家体验正式版本的TF2.0。废话不多说现在正式开始教程。1 环境准备我目前是在Window...

2019-10-01 16:33:27 25537 48

原创 『深度应用』一小时教你上手训练MaskRCNN·Keras开源实战(Windows&Linux)

0. 前言介绍开源地址:https://github.com/matterport/Mask_RCNN个人主页:http://www.yansongsong.cn/MaskRCNN是何凯明基于以往的faster rcnn架构提出的新的卷积网络,一举完成了object instance segmentation. 该方法在有效地目标的同时完成了高质量的语义分割。 文章的主要思路就是把...

2019-08-16 10:03:47 2064 5

原创 『深度应用』NLP命名实体识别(NER)开源实战教程

开源地址:https://github.com/xiaosongshine/NLP_NER_RNN_Keras个人主页:http://www.yansongsong.cn/近几年来,基于神经网络的深度学习方法在计算机视觉、语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展。在NLP的关键性基础任务—命名实体识别(Named Entity Recognition,NER...

2019-08-15 14:36:11 6348 8

原创 『AI实践学』使用一维卷积神经网络处理时间序列数据(基于Keras Conv1D)

个人网站–>http://www.yansongsong.cn概述许多技术文章都关注于二维卷积神经网络(2D CNN)的使用,特别是在图像识别中的应用。而一维卷积神经网络(1D CNNs)只在一定程度上有所涉及,比如在自然语言处理(NLP)中的应用。目前很少有文章能够提供关于如何构造一维卷积神经网络来解决你可能正面临的一些机器学习问题。本文试图补上这样一个短板。...

2019-08-08 09:52:55 36697 14

原创 [深度应用]·Keras实现Self-Attention文本分类(机器如何读懂人心)

[深度应用]·Keras实现Self-Attention文本分类(机器如何读懂人心)配合阅读:[深度概念]·Attention机制概念学习笔记[TensorFlow深度学习深入]实战三·分别使用DNN,CNN与RNN(LSTM)做文本情感分析笔者在[深度概念]·Attention机制概念学习笔记博文中,讲解了Attention机制的概念与技术细节,本篇内容配合讲解,使用Kera...

2019-05-27 12:07:31 11870 27

原创 [深度概念]·Attention机制实践解读

[深度概念]·Attention机制实践解读此文源自一个博客,笔者用黑体做了注释与解读,方便自己和大家深入理解Attention model,写的不对地方欢迎批评指正。。1、Attention Model 概述深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛聚...

2019-05-26 16:10:49 5522 5

原创 [深度应用]·实战掌握Dlib人脸识别开发教程

[深度应用]·实战掌握Dlib人脸识别开发教程项目GitHub地址-->https://github.com/xiaosongshine/dlib_face_recognition1.背景介绍Dlib是一个深度学习开源工具,基于C++开发,也支持Python开发接口,功能类似于TensorFlow与PyTorch。但是由于Dlib对于人脸特征提取支持很好,有很多训练好的人脸...

2019-04-25 00:11:15 1706

原创 [深度应用]·实战掌握PyTorch图片分类简明教程

[深度应用]·实战掌握PyTorch图片分类简明教程个人网站-->http://www.yansongsong.cn项目GitHub地址-->https://github.com/xiaosongshine/image_classifier_PyTorch1.引文深度学习的比赛中,图片分类是很常见的比赛,同时也是很难取得特别高名次的比赛,因为图片分类已经被...

2019-04-19 23:12:18 1766 9

原创 [开发技巧]·PyTorch如何使用GPU加速(CPU与GPU数据的相互转换)

[开发技巧]·PyTorch如何使用GPU加速(CPU与GPU数据的相互转换)配合本文推荐阅读:PyTorch中Numpy,Tensor与Variable深入理解与转换技巧关联阅读:[深度应用]·主流深度学习硬件速度对比(CPU,GPU,TPU)[开发技巧]·TensorFlow&KerasGPU1.问题描述在进行深度学习开发时,GPU加速可以提升我们开发的效...

2019-04-19 16:12:13 30141 11

原创 [深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)

[深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)个人网站-->http://www.yansongsong.cnGithub项目地址-->https://github.com/xiaosongshine/bearing_detection_by_conv1d大赛简介轴承是在机械设备中具有广泛应...

2019-04-11 18:34:23 4683 53

原创 [开发技巧]·深度学习使用生成器加速数据读取与训练简明教程(TensorFlow,pytorch,keras)

[开发技巧]·深度学习使用生成器加速数据读取与训练简明教程(TensorFlow,pytorch,keras)1.问题描述在深度学习里面有句名言,数据决定深度应用效果的上限,而网络模型与算法的功能是不断逼近这个上限。由此也可以看出数据的重要程度。在进行深度学习的开发中,我们在建模与训练之前很重要的部分就是数据特征分析与读取,这篇文章的主要内容是数据的读取与组织,其他的方面等以后在...

2019-04-11 17:42:05 2688 2

原创 [深度应用]·首届中国心电智能大赛初赛开源Baseline(基于Keras val_acc: 0.88)

[深度应用]·首届中国心电智能大赛初赛开源Baseline(基于Keras val_acc: 0.88)个人网站-->http://www.yansongsong.cn项目github地址:https://github.com/xiaosongshine/preliminary_challenge_baseline_keras初赛介绍:https://blog.csdn.ne...

2019-04-02 17:15:07 5723 23

原创 [个人网站搭建]·极简方式实现打赏功能

[个人网站搭建]·极简方式实现打赏功能可以查看我的个人主页,参看效果-->http://www.yansongsong.cn/个人网站搭建github地址:https://github.com/xiaosongshine/djangoWebs在个人网站博客中,打赏赞助是对作者的一种支持与鼓励,是很常见的功能。本文将分享一种非常简单的方式,来实现打赏功能。实践展示:...

2019-03-28 09:23:15 2976 4

原创 [深度应用]·主流深度学习硬件速度对比(CPU,GPU,TPU)

主流深度学习硬件速度对比(CPU,GPU,TPU)个人主页-->http://www.yansongsong.cn关联阅读:[开发技巧]·PyTorch如何使用GPU加速(CPU与GPU数据的相互转换)[开发技巧]·TensorFlow&KerasGPU我们基于CNN实现Cifar10 数据集分类把这段相同的代码在不同主流深度学习进行测试,得到...

2019-03-15 10:32:43 13558 14

翻译 [深度学习概念]·语音识别模型WaveNet介绍

语音识别模型WaveNet介绍 这篇文章介绍了WaveNet,一种原始音频波形的深度生成模型。我们展示了WaveNets能够生成模仿任何人类语音的语音,并且听起来比现有的最佳文本语音系统更自然,与人类表现的差距缩小了50%以上。我们还演示了相同的网络可以用于合成其他音频信号,如音乐,并呈现自动生成的钢琴片的一些引人注目的样本。说话的机器允许人们与机器交谈是人机交互的长期梦想。在...

2019-01-22 10:34:06 2286 1

原创 [深度学习概念]·梯度下降原理讲解

目录梯度下降的场景假设梯度下降微分梯度梯度下降算法的数学解释梯度下降算法的实例单变量函数的梯度下降多变量函数的梯度下降梯度下降算法的实现coding time小结Further reading转载地址可以结合我的博文Numpy梯度下载实现对比来看梯度下降的场景假设 梯度 梯度下降算法的数学解释 梯度下降算法的实例 梯度下降算法的实现...

2019-01-20 11:29:43 437 3

原创 [深度学习概念]·CNN卷积神经网络原理分析

目录2.0 卷积神经网络简述2.1 二维卷积层2.1.1. 二维互相关运算2.1.2. 图像中物体边缘检测2.1.3. VGGNet实例边缘检测分析2.0 卷积神经网络简述本章将介绍卷积神经网络。它是近年来深度学习能在计算机视觉领域取得突破性成果的基石。它也逐渐在被其他诸如自然语言处理、推荐系统和语音识别等领域广泛使用。我们将先描述卷积神经网络中卷积层和池化层的工作原理...

2019-01-20 11:16:16 807 1

原创 [深度学习工具]基于PyTorch的NLP框架Flair

 一个非常简单的框架,用于最先进的NLP。由Zalando Research开发。Flair简介: 一个功能强大的NLP库。Flair允许您将最先进的自然语言处理(NLP)模型应用于您的文本,例如命名实体识别(NER),词性标注(PoS),意义消歧和分类。 多种语言。感谢Flair社区,我们支持快速增长的语言数量。我们现在还包括“ 一个模型,多种语言 ”标记器,即单个模...

2019-01-19 15:58:21 741

原创 [深度学习工具]·百度PaddlePaddle深度强化学习框架PARL

PARL快速入门示例PaddlePaddle PARL 的名字来源于 PAddlepaddle Reinfocement Learning,是一款基于百度 PaddlePaddle 打造的深度强化学习框架。PaddlePaddle PARL 凝聚了百度多年来在强化学习领域的技术深耕和产品应用经验。与现有强化学习工具和平台相比,PaddlePaddle PARL 具有更高的可扩展性、可复现性和可...

2019-01-19 00:09:31 1571

原创 [开发工具]·pip conda 使用国内源加速

pip conda 使用国内源加速以前使用默认源,有时候下载速度会很慢,所以找了一些国内的pip,conda源,下载的时候可以加速,使用起来也很简单。国内的pip源,如下:推荐使用清华源,支持包比较丰富conda操作单次使用 1 # conda install tensorflow-chttps://mirrors.tuna.tsing...

2019-01-07 23:10:16 2517

原创 [Keras深度学习浅尝]实战五·使用DNN自编码器实现聚类操作数据降维

[Keras深度学习浅尝]实战五·使用DNN自编码器实现聚类操作数据降维代码部分# TensorFlow and tf.kerasimport tensorflow as tffrom tensorflow import keras# Helper librariesimport osos.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"import ...

2018-12-21 16:26:56 4291

原创 [开发技巧]·html实现返回页面并自动刷新

[APICloud实用技巧教程]实现返回页面并自动刷新问题描述在进行APP开发时,有时候会遇到你下一级页面操作过以后会改变上一级页面的结果。这时候就需要我们去刷新上一级页面。一般可以采取三种方式:定时刷新用eventListener,检测事件使用execScript,外部执行js我选用的是第三个方式,操作简单,效率高,且代码量少。历程我们在win: a.html打开了...

2018-12-18 15:00:52 3426

原创 [开发技巧]·TensorFlow中numpy与tensor数据相互转化(支持tf1.x-tf2.x)

[Python3 填坑之旅]2·TensorFlow中Numpy与Tensor数据相互转化问题描述在我们使用TensorFlow进行深度学习训练时,很多时候都是与Numpy数据打招呼,例如我们csv或者照片数据等。但是我们都知道,TensorFlow训练时都是使用Tensor来存储变量的,并且网络输出的结果也是Tensor。一般情况下我们不会感受到Numpy与Tensor之间的区别,因...

2018-12-11 15:31:58 24879 16

原创 [TensorFlow深度学习入门]实战九·用CNN做科赛网TibetanMNIST藏文手写数字数据集准确率98%+

[TensorFlow深度学习入门]实战九·用CNN做科赛网TibetanMNIST藏文手写数字数据集准确率98%+我们在博文,使用CNN做Kaggle比赛手写数字识别准确率99%+,在此基础之上,我们进行对科赛网TibetanMNIST藏文手写数字数据集训练,来验证网络的正确性。问题描述数据地址背景描述MNIST 数据集来自美国国家标准与技术研究所, National Institu...

2018-12-03 23:04:37 672

原创 [TensorFlow深度学习入门]实战八·简便方法实现TensorFlow模型参数保存与加载(pb方式)

[TensorFlow深度学习入门]实战八·简便方法实现TensorFlow模型参数保存与加载(pb方式)在上篇博文中,我们探索了TensorFlow模型参数保存与加载实现方法采用的是保存ckpt的方式。这篇博文我们会使用保存为pd格式文件来实现。首先,我会在上篇博文基础上,实现由ckpt文件如何转换为pb文件,再去探索如何在训练时直接保存pb文件,最后是如何利用pb文件复现网络与参数完成应用...

2018-12-03 12:02:57 560

原创 [TensorFlow深度学习入门]实战六·用CNN做Kaggle比赛手写数字识别准确率99%+

[TensorFlow深度学习入门]实战六·用CNN做手写数字识别准确率99%+参考博客地址import osos.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data

2018-12-01 18:06:23 1776

原创 [TensorFlowJS只如初见]实战四·使用TensorFlowJS拟合曲线(类似TensorFlow原生实现方法)

[TensorFlowJS只如初见]实战四·使用TensorFlowJS拟合曲线(类似TensorFlow原生实现方法)问题描述拟合y= x*x -2x +3 + 0.1(-1到1的随机值) 曲线给定x范围(0,3)问题分析在直线拟合博客中,我们使用最简单的y=wx+b的模型成功拟合了一条直线,现在我们在进一步进行曲线的拟合。简单的y=wx+b模型已经无法满足我们的需求,需要利...

2018-12-01 11:50:01 720 2

原创 [TensorFlowJS只如初见]实战三·使用TensorFlowJS拟合曲线

问题描述拟合y= x*x -2x +3 + 0.1(-1到1的随机值) 曲线给定x范围(0,3)问题分析在直线拟合博客中,我们使用最简单的y=wx+b的模型成功拟合了一条直线,现在我们在进一步进行曲线的拟合。简单的y=wx+b模型已经无法满足我们的需求,需要利用更多的神经元来解决问题了。代码<html><head> <script...

2018-11-30 10:52:00 408

原创 [TensorFlowJS只如初见]实战二·使用TensorFlowJS拟合直线

[TensorFlowJS只如初见]实战二·使用TensorFlowJS拟合直线问题描述拟合直线 y =(2x -1) + 0.1(-1到1的随机值)给定x范围(0,3)可以使用学习框架建议使用y = w * x + b 网络模型代码<html><head> <script src="https://cdn.jsdelivr.net/npm...

2018-11-29 21:55:46 430

原创 [TensorFlowJS只如初见]实战一·JavaScript原生代码实现梯度下降求最小值

[TensorFlowJS只如初见]实战一·JavaScript原生代码实现梯度下降问题描述:求解y1 = xx -2 x +3 + 0.01*(-1到1的随机值) 与 y2 = 0 的最小距离点(x,y)给定x范围(0,3不使用学习框架,手动编写梯度下降公式求解,提示:x = x - alp*(y1-y2)导数(alp为学习率)函数图像为:HTML代码<ht...

2018-11-29 21:01:04 306 3

原创 [TensorFlow深度学习入门]实战三·使用TensorFlow拟合曲线

[深度学习入门]题目二·使用TensorFlow拟合曲线问题描述拟合y= xx -2 x +3 + 0.1*(-1到1的随机值) 曲线给定x范围(0,3)问题分析在上篇博客中,我们使用最简单的y=wx+b的模型成功拟合了一条直线,现在我们在进一步进行曲线的拟合。简单的y=wx+b模型已经无法满足我们的需求,需要利用更多的神经元来解决问题了。生成数据import nu...

2018-11-28 14:49:15 2501

语音识别技术的研究进展与展望(DFCNN讲解)

自动语音识别(ASR)技术的目的是让机器能够“听懂”人类的语音,将人类语音信息转化为可读的文字信息,是实现人机交互的关键技术,也是长期以来的研究热点。最近几年,随着深度神经网络的应用,加上海量大数据的使用和云计算的普及,语音识别取得了突飞猛进的进展,在多个行业突破了实用化的门槛,越来越多的语音技术产品进入了人们的日常生活,包括苹果的Siri、亚马逊的Alexa、讯飞语音输入法、叮咚智能音箱等都是其中的典型代表。对语音识别技术的发展情况、最近几年的关键突破性技术进行了介绍,并对语音识别技术的发展趋势做了展望。

2019-08-14

1000个12导联ECG心电图数据集

1000个12导联ECG心电图数据集,600例有标签,400例用于测试。采样率为500 Hz。MAT格式

2019-08-29

word2vec text8数据集

深度学习中word2vector测试语料text8,Word2Vec数据集。TensorFlow实战

2018-12-12

目标检测数据集(皮卡丘)数据集

我们首先使用一个开源的皮卡丘3D模型生成了1000张不同角度和大小的皮卡丘图像。然后我们收集了一系列背景图像,并在每张图的随机位置放置一张随机的皮卡丘图像。

2019-01-17

交通标志数据集

交通标志数据集,共有62类交通标志。其中训练集数据有4572张照片(每个类别大概七十个),测试数据集有2520张照片(每个类别大概40个)。数据包含两个子目录分别train与test 实战地址:https://blog.csdn.net/xiaosongshine

2019-04-19

康奈尔大学的电影对白语料库Cornell Movie-Dialogs Corpus

康奈尔大学的电影对白语料库Cornell Movie-Dialogs Corpus

2019-03-30

Market-1501-v15.09.152.zip

Market-1501 数据集在清华大学校园中采集,夏天拍摄,在 2015 年构建并公开。它包括由6个摄像头(其中5个高清摄像头和1个低清摄像头)拍摄到的 1501 个行人、32668 个检测到的行人矩形框。每个行人至少由2个摄像头捕获到,并且在一个摄像头中可能具有多张图像。训练集有 751 人,包含 12,936 张图像,平均每个人有 17.2 张训练数据;测试集有 750 人,包含 19,732 张图像,平均每个人有 26.3 张测试数据。介绍链接:https://blog.csdn.net/ctwy291314/article/details/83544088

2019-10-25

cudnn-10.1-windows10-x64-v7.6.3.30.zip

windows10 cuda 10.1 配套版本 cudnn-10.1 cudnn-10.1-windows10-x64-v7.6.3.30.zip

2019-10-08

LabelImg标注图片工具windows免安装版本

LabelImg是深度学习中用来标注图片中物体位置与名称的工具,更简单的打标签的可执行程序,打开既可以使用 注意打开的图片文件不能有中文路径

2019-08-14

resnet18-5c106cde.pth.zip

cp /Users/xshine/Downloads/resnet18-5c106cde.pth /Users/xshine/.cache/torch/checkpoints/resnet18-5c106cde.pth

2019-11-02

1万张数字验证码数据集

1万张数字验证码数据集,用于深度学习里面CNN网络识别训练

2018-12-12

豆瓣影评数据集

豆瓣5万条影评原始数据集,机器学习,nlp,深度学习的宝宝赶快看过来,看过来哈。 数据集格式: title,star,comment,label是对应电影名称,评论星级(1-5星),评论内容,差评好评(星级大于3为好评)

2019-02-21

pytorch训练cifar100测试单GPU效率代码

pytorch训练cifar100测试单GPU效率代码,用于测试GPU效率,基于开源https://github.com/weiaicunzai/pytorch-cifar100

2020-08-25

cifar-100-python.zip

cifar-100-python.tar.gz的下载资源,解决通过官方网站https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz下载太慢问题。

2020-08-25

ecg_1000例常规心电图

下载完整的训练集和测试集,共1000例常规心电图,其中训练集中包含600例,测试集中共400例。该数据是从多个公开数据集中获取。

2020-08-10

机器学习训练秘籍

《机器学习训练秘籍》为吴恩达未发表的作品,作为内部开发教学使用,中文版,分享给大家。

2018-11-24

微软Maluuba英语对话数据集

Maluuba让两个人在聊天室中对话并收集了这些数据。一个人扮演用户,另一个人充当计算机。用户试图查找特价机票,另一个充当聊天机器人的人使用数据库检索信息。交互只包含文本(没有口语交互),研究人员有意识地选择了这个方法。大部分人都喜欢打字,而不是说话,那也就是说,这份数据集就远离了质量不高的语音识别和背景噪声。

2019-03-30

labelImg.zip

我们知道,图片标注主要是用来创建自己的数据集,方便进行深度学习训练。本篇博客将推荐一款十分好用的图片标注工具LabelImg,重点介绍其安装以及使用的过程。如果想简便,请直接下载打包版本

2020-05-22

深度学习入门之Pytorch

深度学习如今已经成为科技领域最炙手可热的技术,在本书中,我们将帮助你入门深度学习。本书将从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型。通过阅读本书,你将学到机器学习中的线性回归和 Logistic 回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络,以及生成对抗网络,最后通过实战了解深度学习前沿的研究成果,以及 PyTorch 在实际项目中的应用。本书将理论和代码相结合,帮助读者更好地入门深度学习,适合任何对深度学习感兴趣的人阅读。

2018-11-24

MXNet fashion-mnist数据集

针对于MXNet框架 fashion-mnist数据集 mnist_train = gl.data.vision.FashionMNIST(root="fashion-mnist/",train=True) mnist_test = gl.data.vision.FashionMNIST(root="fashion-mnist/",train=False)

2019-01-15

PTB文本数据集

PTB(Penn Treebank Dataset)文本数据集是语言模型学习中目前最广泛使用的数据集。

2019-03-31

首届中国心电智能大赛初赛样例代码

各参赛队伍需要在初赛正式结束之前,在下方提交代码文件、模型文件(如有)和在测试集数据上的预测结果。大赛组委会通过比较预测结果与金标准来计算各支参赛队伍的初赛成绩。为了保证初赛结果的公平公正,我们将检查各参赛队伍的算法代码,并在测试集上进行结果验证。为了快速完成测试,各参赛队伍需要参考样例代码,布局需和样例代码保持一致,且必须包含如下各个文件:

2019-04-02

Keil.STM32F0xx_DFP.2.0.0.pack

Keil.STM32F0xx_DFP.2.0.0.pack 文件,需要的朋友自取。

2019-06-05

搜狗最新已经去重200w词库

包括200W左右的最新词,把这个词库作为搜索引擎分词的标准。 词库包括200W左右的最新词,把这个词库作为搜索引擎分词的标准。

2019-11-04

简单粗暴 TensorFlow

《简单粗暴 TensorFlow》的作者李锡涵,积极致力于 TensorFlow 的推广。这篇精简的 TensorFlow 入门指导,基于 TensorFlow 的 Eager Execution(动态图)模式,力图让具备一定机器学习及 Python 基础的开发者们快速上手 TensorFlow。

2018-11-24

IMDB影评数据集

IMDB电影数据集train含有25000个电影评论,分为正反两类。数据与标签进行了处理保存到了一个CSV文件中,影评数据datas["x"],标签为datas["y"]。

2019-02-20

resnet101_weights_tf_dim_ordering_tf_kernels_notop.h5

resnet101_weights_tf_dim_ordering_tf_kernels_notop

2019-08-18

PyTorch 模型训练实用教程

本教程内容主要为在 PyTorch 中训练一个模型所可能涉及到的方法及函 数,并且对 PyTorch

2018-12-21

《21个项目玩转深度学习:基于Tensorflow的实践详解》高清版

《21个项目玩转深度学习:基于TensorFlow的实践详解》以实践为导向,深入介绍了深度学习技术和TensorFlow框架编程内容。通过本书,读者可以训练自己的图像识别模型、进行目标检测和人脸识别、完成一个风格迁移应用,还可以使用神经网络生成图像和文本,进行时间序列预测、搭建机器翻译引擎,训练机器玩游戏等。 全书共包含21个项目,分为深度卷积网络、RNN网络、深度强化学习三部分。读者可以在自己动手实践的过程中找到学习的乐趣,了解算法和编程框架的细节,让学习深度学习算法和TensorFlow的过程变得轻松和高效。本书基于TensorFlow 1.4版本,并介绍了该版本中的一些新特性。

2018-11-21

FashionMNIST数据集

Fashion-MNIST是一个替代MNIST手写数字集的图像数据集。 它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自10种类别的共7万个不同商品的正面图片。Fashion-MNIST的大小、格式和训练集/测试集划分与原始的MNIST完全一致。60000/10000的训练测试数据划分,28x28的灰度图片。你可以直接用它来测试你的机器学习和深度学习算法性能,且不需要改动任何的代码。

2018-12-22

labelme.exe文件

Labelme 是一个图形界面的图像标注软件。其的设计灵感来自于 http://labelme.csail.mit.edu/ 。它是用 Python 语言编写的,图形界面使用的是 Qt(PyQt)标注工具labelme在windows上的可执行文件exe,可以直接在windows打开使用

2020-05-22

FastAI mnist_sample.tgz

FastAI mnist_sample.tgz cd /Users/xshine/.fastai/data cp * . tar -zxvf mnist_sample.tgz

2019-11-02

2000+个多标签心电图数据

2000+个医疗心电样本。每个样本有8个导联,分别是I,II,V1,V2,V3,V4,V5和V6。 III=II-I aVR=-(I+II)/2 aVL=I-II/2 aVF=II-I/2 每个样本采样频率为500 HZ,长度为10秒,单位电压为4.88微伏(microvolts)。

2019-12-16

Re-ID-baseline.zip

Re-ID-master.zip baseline Markt 1501 Res 50 : batchsize=32 : Rank1 =9581 mAP=8828

2019-10-24

复旦大学_深度学习与神经网络书籍

知乎地址:https://zhuanlan.zhihu.com/p/61591812 随书练习题:https://github.com/nndl/exercise 总体而言,这本书从基础到研究前沿介绍了深度学习的核心概念与理论。我们不仅能了解到全连接、卷积和循环等基本深度神经网络网络,同时还能学习到前沿的 Transformer 等模型,当然所需的数学基础在附录也都是有提供的。这本 446 页的深度学习开放教科书,足够我们了解 DL 的前前后后。

2019-04-08

TeamViewer-Windows企业破解版

TeamViewer-Windows企业破解版,同一账号下windows随意使用。

2019-05-06

基于OpenCV图像处理的火焰检测设计论文

以四角切圆燃烧炉为例,在Microsoft Visual Studio 2010编译环境下,采用Open CV计算机视觉库混合编程,根据燃烧炉火焰图像的灰度、火焰轮廓面积大小等参数综合评价炉膛火焰燃烧质量,给出火焰燃烧结果判断结果,该系统能在火焰动态燃烧情况下给出判断,有效降低了对火焰是否正常燃烧的误判率。

2018-11-22

吴恩达 Programming Assignments of Deep Learning Specialization (5 courses)

吴恩达 Programming Assignments of Deep Learning Specialization (5 courses)

2018-11-24

TensorFlow内核解析

这是一本剖析 TensorFlow 内核工作原理的书籍,并非讲述如何使用TensorFlow 构建机器学习模型,也不会讲述应用 TensorFlow 的最佳实践。本书将通过剖析 TensorFlow 源代码的方式,揭示 TensorFlow 的系统架构、领域模型、工作原理、及其实现模式等相关内容,以便揭示内在的知识。

2018-12-08

动⼿学深度学习

《动手学深度学习》 面向中文读者的能运行、可讨论的深度学习教科书

2019-01-04

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除