[开发技巧]·PyTorch如何使用GPU加速(CPU与GPU数据的相互转换)

[开发技巧]·PyTorch如何使用GPU加速(CPU与GPU数据的相互转换)

配合本文推荐阅读:PyTorch中Numpy,Tensor与Variable深入理解与转换技巧

关联阅读:

[深度应用]·主流深度学习硬件速度对比(CPU,GPU,TPU)

[开发技巧]·TensorFlow&Keras GPU

1.问题描述

在进行深度学习开发时,GPU加速可以提升我们开发的效率,速度的对比可以参照笔者这篇博文:[深度应用]·主流深度学习硬件速度对比(CPU,GPU,TPU)结论:通过对比看出相较于普通比较笔记本的(i5 8250u)CPU,一个入门级显卡(GPU MX150)可以提升8倍左右的速度,而高性能的显卡(GPU GTX1080ti)可以提升80倍的速度,如果采用多个GPU将会获得更快速度,所以经常用于训练的话还是建议使用GPU。

在PyTorch中使用GPU和TensorFlow中不同,在TensorFlow如果不对设备进行指定时,TensorFlow检测到GPU就会把自动将数据与运算转移到GPU中。而PyTorch类似于MxNet,需要显性的指定数据和运算放在哪里执行,这样的操作比较自由,却也有些繁琐。因为如果哪一步忘记转换了就会运行出错。

本文在数据存储的层面上,帮大家解析一下CPU与GPU数据的相互转换。让大家可以掌握PyTorch使用GPU加速的技巧。

2.原理讲解

使用GPU之前我需要安装PyTorch的GPU版本,建议使用conda安装,官方教程地址

conda install pytorch torchvision cudatoolkit=9.0 -c pytorch

检测是否可以使用GPU,使用一个全局变量use_gpu,便于后面操作使用

use_gpu = torch.cuda.is_available()

可以使用GPU,use_gpu的值为True,否则为False。当可以使用GPU,我们不想使用,可以直接赋值use_gpu = False

我们在进行转换时,需要把数据,网络,与损失函数转换到GPU上

1.构建网络时,把网络,与损失函数转换到GPU上

model = get_model()
loss_f = t.nn.CrossEntropyLoss()
if(use_gpu):
    model = model.cuda()
    loss_f = loss_f.cuda()

2.训练网络时,把数据转换到GPU上

if (use_gpu):
    x,y = x.cuda(),y.cuda()

3.取出数据是,需要从GPU准换到CPU上进行操作

if(use_gpu):
    loss = loss.cpu()
    acc = acc.cpu()

进一步的对数据操作可以查看笔者这篇博文:[开发技巧]·PyTorch中Numpy,Tensor与Variable深入理解与转换技巧

 

最后推荐一个PyTorch视频教程

我购买过了,课程质量很高,既有原理讲解也有实战演练。强烈推荐。缺点就是教的很细,看完需要挺多时间,但是深深研究下去还是有很多收获的。可以收获深度学习知识与技巧,也可以学会实战编程。
现在在做活动,可以领20元红包。。

也欢迎大家加入笔者的知识星球:「AI深度学习应用之路」

基于深度学习的理论学习与应用开发技术分享,笔者会经常分享深度学习干货内容,大家在学习或者应用深度学习时,遇到什么问题也可以与我在上面交流知无不答。

几杯奶茶的价格可以订阅一年出自CSDN博客专家&知乎深度学习专栏作家--小宋是呢

©️2020 CSDN 皮肤主题: 1024 设计师: 上身试试 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值