首届中国心电智能大赛初赛赛制说明

首届中国心电智能大赛初赛赛制说明


初赛赛题

各团队在初赛中的目标是利用常规静息心电图的电压信号,预测“正常心电图”和“异常心电图”。根据心血管医生对心电图的诊断结果作为金标准,我们将那些没有明显异常的心电图作为“正常心电图”,并将包含一种或更多异常或疾病的心电图作为“异常心电图”。各团队需要在初赛规定时间内,利用训练集中常规心电图的电压信号,设计并实现可预测正常和异常等两类心电图的算法。各团队在测试集中常规心电图的预测结果将用于计算成绩。

初赛数据

下载完整的训练集和测试集,共1000例常规心电图,其中训练集中包含600例,测试集中共400例。该数据是从多个公开数据集中获取。参赛团队需要利用有正常/异常两类标签的训练集数据设计和实现算法,并在没有标签的测试集上做出预测。

该心电数据的采样率为500 Hz。为了方便参赛团队用不同编程语言都能读取数据,所有心电数据的存储格式为MAT格式。该文件中存储了12个导联的电压信号。训练数据对应的标签存储在txt文件中,其中0代表正常,1代表异常。

结果提交

各参赛队伍需要在初赛正式结束之前,在下方提交代码文件、模型文件(如有)和在测试集数据上的预测结果。大赛组委会通过比较预测结果与金标准来计算各支参赛队伍的初赛成绩。为了保证初赛结果的公平公正,我们将检查各参赛队伍的算法代码,并在测试集上进行结果验证。为了快速完成测试,各参赛队伍需要参考样例代码,布局需和样例代码保持一致,且必须包含如下各个文件:

• 结果文件:answers.txt,保存对测试集的预测结果,其中每一行代表样本编号及其预测结果

• 运行脚本:run.sh,为便于组委会对参赛队伍的代码进行验证,我们将该执行该脚本得到answers.txt

• 代码包:source_code.zip,参赛队伍可将算法相关代码放入该代码包内,输出是对测试集‘TEST’所有样本的预测结果,格式和文件名须与样例answers.txt一致

• 说明文件:README.txt,运行代码的相关说明需写入该文件中

所有参赛团队可多次提交结果,组委会以最后一次提交结果为准

评分机制

如果参赛队伍的代码按照样例代码布局,确定没有缺失和错误,会输出对测试集的预测结果。大赛组委会通过对比预测结果与金标准计算F_1分数,作为参赛队伍的初赛成绩。大赛组委会首先根据参赛队伍的预测结果统计出下表中各个数据,

随后计算F1分数,定义如下:

考虑到当不同算法的成绩非常接近时,其性能可能没有显著差异,因此我们将对所有参赛团队的成绩保留到小数点后4位。

初赛重要时间节点

初赛的时间为北京时间4月1日至4月20日。大赛组委会在北京时间4月1日9点开放数据和样例代码的下载链接,北京时间4月8日起开放提交结果的上传链接,并于北京时间4月20日18点关闭所有链接。组委会将在5月1日前公布初赛结果。参赛选手需要按照样例代码的布局要求,在规定时间内提交代码和在测试集上的预测结果(缺一不可)。为了保证比赛的公平公正,组委会对代码进行测试。组委会同时尊重各参赛队伍的知识产权,在赛后不会公开相关代码。

小宋是呢 CSDN认证博客专家 AI工程师 深度学习领域专家
作者简介:深度学习开发分享博主。全网粉丝3W+,阅读量200W+。
CSDN深度学习博客专家以及微信公众号《简明AI》主要作者。创作内容是基于深度学习的理论学习与应用开发技术分享,致力于最简单明了AI技术分享与最实用AI应用教程。

撰写并发表深度学习论文两篇,获得国家级及省级一等奖奖项八次,以第一作者授权实用新型及发明专利共计十余项,天池与BDCI比赛Top10奖项数次。

在某公司担任算法工程师,从事计算机视觉及时序序列数据的检测识别;深度学习工程化经验丰富,擅长针对新算法研究与应用,包括对模型调优、模型转化及多平台部署等。
相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
<p> 欢迎参加英特尔® OpenVINO™工具套件初级课程 !本课程面向零基础学员,将从AI的基本概念开始,介绍人工智能与视觉应用的相关知识,并且帮助您快速理解英特尔® OpenVINO™工具套件的基本概念以及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔® OpenVINO™工具套件的Demo演示。通过本课程的学习,将帮助您快速上手计算机视觉的基本知识和英特尔® OpenVINO™ 工具套件的相关概念。 </p> <p> 为保证您顺利收听课程参与测试获取证书,还请您于<strong>电脑端</strong>进行课程收听学习! </p> <p> 为了便于您更好的学习本次课程,推荐您免费<strong>下载英特尔® OpenVINO™工具套件</strong>,下载地址:https://t.csdnimg.cn/yOf5 </p> <p> 收听课程并完成章节测试,可获得本课程<strong>专属定制证书</strong>,还可参与<strong>福利抽奖</strong>,活动详情:https://bss.csdn.net/m/topic/intel_openvino </p> <p> 8月1日-9月30日,学习完成【初级课程】的小伙伴,可以<span style="color:#FF0000;"><strong>免费学习【中级课程】</strong></span>,中级课程免费学习优惠券将在学完初级课程后的7个工作日内发送至您的账户,您可以在:<a href="https://i.csdn.net/#/wallet/coupon">https://i.csdn.net/#/wallet/coupon</a>查询优惠券情况,请大家报名初级课程后尽快学习哦~ </p> <p> <span style="font-size:12px;">请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“<a href="https://passport.csdn.net/service">用户服务协议</a>”,英特尔“<a href="https://www.intel.cn/content/www/cn/zh/privacy/intel-privacy-notice.html?_ga=2.83783126.1562103805.1560759984-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">隐私声明</a>”和“<a href="https://www.intel.cn/content/www/cn/zh/legal/terms-of-use.html?_ga=2.84823001.1188745750.1560759986-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">使用条款</a>”。</span> </p> <p> <br /> </p>
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页
实付 69.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值